第 12 章 PPO 算法

12.1 简介

第 11 章介绍的 TRPO 算法在很多场景上的应用都很成功,但是我们也发现它的计算过程非常复杂,每一步更新的运算量非常大。于是,TRPO 算法的改进版——PPO 算法在 2017 年被提出,PPO 基于 TRPO 的思想,但是其算法实现更加简单。并且大量的实验结果表明,与 TRPO 相比,PPO 能学习得一样好(甚至更快),这使得 PPO 成为非常流行的强化学习算法。如果我们想要尝试在一个新的环境中使用强化学习算法,那么 PPO 就属于可以首先尝试的算法。

回忆一下 TRPO 的优化目标:

TRPO 使用泰勒展开近似、共轭梯度、线性搜索等方法直接求解。PPO 的优化目标与 TRPO 相同,但 PPO 用了一些相对简单的方法来求解。具体来说,PPO 有两种形式,一是 PPO-惩罚,二是 PPO-截断,我们接下来对这两种形式进行介绍。

12.2 PPO-惩罚

PPO-惩罚(PPO-Penalty)用拉格朗日乘数法直接将 KL 散度的限制放进了目标函数中,这就变成了一个无约束的优化问题,在迭代的过程中不断更新 KL 散度前的系数。即:

的更新规则如下:

  1. 如果,那么
  2. 如果,那么
  3. 否则

其中,是事先设定的一个超参数,用于限制学习策略和之前一轮策略的差距。

12.3 PPO-截断

PPO 的另一种形式 PPO-截断(PPO-Clip)更加直接,它在目标函数中进行限制,以保证新的参数和旧的参数的差距不会太大,即:

其中 ,即把 限制在 内。上式中是一个超参数,表示进行截断(clip)的范围。

如果,说明这个动作的价值高于平均,最大化这个式子会增大,但不会让其超过。反之,如果,最大化这个式子会减小,但不会让其超过。如图 12-1 所示。

图12-1 PPO-截断示意图

12.4 PPO 代码实践

与 TRPO 相同,我们仍然在车杆和倒立摆两个环境中测试 PPO 算法。大量实验表明,PPO-截断总是比 PPO-惩罚表现得更好。因此下面我们专注于 PPO-截断的代码实现。

首先导入一些必要的库,并定义策略网络和价值网络。

import gym
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import rl_utils
class PolicyNet(torch.nn.Module):
def __init__(self, state_dim, hidden_dim, action_dim):
super(PolicyNet, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
return F.softmax(self.fc2(x), dim=1)
class ValueNet(torch.nn.Module):
def __init__(self, state_dim, hidden_dim):
super(ValueNet, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
return self.fc2(x)
class PPO:
''' PPO算法,采用截断方式 '''
def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
lmbda, epochs, eps, gamma, device):
self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)
self.critic = ValueNet(state_dim, hidden_dim).to(device)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(),
lr=actor_lr)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),
lr=critic_lr)
self.gamma = gamma
self.lmbda = lmbda
self.epochs = epochs # 一条序列的数据用来训练轮数
self.eps = eps # PPO中截断范围的参数
self.device = device
def take_action(self, state):
state = torch.tensor([state], dtype=torch.float).to(self.device)
probs = self.actor(state)
action_dist = torch.distributions.Categorical(probs)
action = action_dist.sample()
return action.item()
def update(self, transition_dict):
states = torch.tensor(transition_dict['states'],
dtype=torch.float).to(self.device)
actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(
self.device)
rewards = torch.tensor(transition_dict['rewards'],
dtype=torch.float).view(-1, 1).to(self.device)
next_states = torch.tensor(transition_dict['next_states'],
dtype=torch.float).to(self.device)
dones = torch.tensor(transition_dict['dones'],
dtype=torch.float).view(-1, 1).to(self.device)
td_target = rewards + self.gamma * self.critic(next_states) * (1 -
dones)
td_delta = td_target - self.critic(states)
advantage = rl_utils.compute_advantage(self.gamma, self.lmbda,
td_delta.cpu()).to(self.device)
old_log_probs = torch.log(self.actor(states).gather(1,
actions)).detach()
for _ in range(self.epochs):
log_probs = torch.log(self.actor(states).gather(1, actions))
ratio = torch.exp(log_probs - old_log_probs)
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1 - self.eps,
1 + self.eps) * advantage # 截断
actor_loss = torch.mean(-torch.min(surr1, surr2)) # PPO损失函数
critic_loss = torch.mean(
F.mse_loss(self.critic(states), td_target.detach()))
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
actor_loss.backward()
critic_loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.step()

接下来在车杆环境中训练 PPO 算法。

actor_lr = 1e-3
critic_lr = 1e-2
num_episodes = 500
hidden_dim = 128
gamma = 0.98
lmbda = 0.95
epochs = 10
eps = 0.2
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
"cpu")
env_name = 'CartPole-v0'
env = gym.make(env_name)
env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = PPO(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda,
epochs, eps, gamma, device)
return_list = rl_utils.train_on_policy_agent(env, agent, num_episodes)
Iteration 0: 0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:43: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
Iteration 0: 100%|██████████| 50/50 [00:02<00:00, 19.41it/s, episode=50, return=183.200]
Iteration 1: 100%|██████████| 50/50 [00:03<00:00, 13.49it/s, episode=100, return=184.900]
Iteration 2: 100%|██████████| 50/50 [00:03<00:00, 12.64it/s, episode=150, return=200.000]
Iteration 3: 100%|██████████| 50/50 [00:03<00:00, 12.64it/s, episode=200, return=200.000]
Iteration 4: 100%|██████████| 50/50 [00:03<00:00, 12.81it/s, episode=250, return=200.000]
Iteration 5: 100%|██████████| 50/50 [00:03<00:00, 12.63it/s, episode=300, return=200.000]
Iteration 6: 100%|██████████| 50/50 [00:03<00:00, 12.83it/s, episode=350, return=200.000]
Iteration 7: 100%|██████████| 50/50 [00:03<00:00, 12.58it/s, episode=400, return=200.000]
Iteration 8: 100%|██████████| 50/50 [00:03<00:00, 12.78it/s, episode=450, return=200.000]
Iteration 9: 100%|██████████| 50/50 [00:03<00:00, 12.59it/s, episode=500, return=187.200]
episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()
mv_return = rl_utils.moving_average(return_list, 9)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()

倒立摆是与连续动作交互的环境,同 TRPO 算法一样,我们做一些修改,让策略网络输出连续动作高斯分布(Gaussian distribution)的均值和标准差。后续的连续动作则在该高斯分布中采样得到。

class PolicyNetContinuous(torch.nn.Module):
def __init__(self, state_dim, hidden_dim, action_dim):
super(PolicyNetContinuous, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.fc_mu = torch.nn.Linear(hidden_dim, action_dim)
self.fc_std = torch.nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
mu = 2.0 * torch.tanh(self.fc_mu(x))
std = F.softplus(self.fc_std(x))
return mu, std
class PPOContinuous:
''' 处理连续动作的PPO算法 '''
def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
lmbda, epochs, eps, gamma, device):
self.actor = PolicyNetContinuous(state_dim, hidden_dim,
action_dim).to(device)
self.critic = ValueNet(state_dim, hidden_dim).to(device)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(),
lr=actor_lr)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),
lr=critic_lr)
self.gamma = gamma
self.lmbda = lmbda
self.epochs = epochs
self.eps = eps
self.device = device
def take_action(self, state):
state = torch.tensor([state], dtype=torch.float).to(self.device)
mu, sigma = self.actor(state)
action_dist = torch.distributions.Normal(mu, sigma)
action = action_dist.sample()
return [action.item()]
def update(self, transition_dict):
states = torch.tensor(transition_dict['states'],
dtype=torch.float).to(self.device)
actions = torch.tensor(transition_dict['actions'],
dtype=torch.float).view(-1, 1).to(self.device)
rewards = torch.tensor(transition_dict['rewards'],
dtype=torch.float).view(-1, 1).to(self.device)
next_states = torch.tensor(transition_dict['next_states'],
dtype=torch.float).to(self.device)
dones = torch.tensor(transition_dict['dones'],
dtype=torch.float).view(-1, 1).to(self.device)
rewards = (rewards + 8.0) / 8.0 # 和TRPO一样,对奖励进行修改,方便训练
td_target = rewards + self.gamma * self.critic(next_states) * (1 -
dones)
td_delta = td_target - self.critic(states)
advantage = rl_utils.compute_advantage(self.gamma, self.lmbda,
td_delta.cpu()).to(self.device)
mu, std = self.actor(states)
action_dists = torch.distributions.Normal(mu.detach(), std.detach())
# 动作是正态分布
old_log_probs = action_dists.log_prob(actions)
for _ in range(self.epochs):
mu, std = self.actor(states)
action_dists = torch.distributions.Normal(mu, std)
log_probs = action_dists.log_prob(actions)
ratio = torch.exp(log_probs - old_log_probs)
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1 - self.eps, 1 + self.eps) * advantage
actor_loss = torch.mean(-torch.min(surr1, surr2))
critic_loss = torch.mean(
F.mse_loss(self.critic(states), td_target.detach()))
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
actor_loss.backward()
critic_loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.step()

创建环境Pendulum-v0,并设定随机数种子以便重复实现。接下来我们在倒立摆环境中训练 PPO 算法。

actor_lr = 1e-4
critic_lr = 5e-3
num_episodes = 2000
hidden_dim = 128
gamma = 0.9
lmbda = 0.9
epochs = 10
eps = 0.2
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
"cpu")
env_name = 'Pendulum-v0'
env = gym.make(env_name)
env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0] # 连续动作空间
agent = PPOContinuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
lmbda, epochs, eps, gamma, device)
return_list = rl_utils.train_on_policy_agent(env, agent, num_episodes)
Iteration 0: 100%|██████████| 200/200 [00:22<00:00, 9.02it/s, episode=200, return=-1000.354]
Iteration 1: 100%|██████████| 200/200 [00:22<00:00, 8.78it/s, episode=400, return=-922.780]
Iteration 2: 100%|██████████| 200/200 [00:20<00:00, 9.63it/s, episode=600, return=-483.957]
Iteration 3: 100%|██████████| 200/200 [00:20<00:00, 9.80it/s, episode=800, return=-472.933]
Iteration 4: 100%|██████████| 200/200 [00:20<00:00, 9.54it/s, episode=1000, return=-327.589]
Iteration 5: 100%|██████████| 200/200 [00:20<00:00, 9.63it/s, episode=1200, return=-426.262]
Iteration 6: 100%|██████████| 200/200 [00:20<00:00, 9.73it/s, episode=1400, return=-224.806]
Iteration 7: 100%|██████████| 200/200 [00:21<00:00, 9.49it/s, episode=1600, return=-279.722]
Iteration 8: 100%|██████████| 200/200 [00:20<00:00, 9.62it/s, episode=1800, return=-428.538]
Iteration 9: 100%|██████████| 200/200 [00:20<00:00, 9.81it/s, episode=2000, return=-235.771]
episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()
mv_return = rl_utils.moving_average(return_list, 21)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('PPO on {}'.format(env_name))
plt.show()

12.5 总结

PPO 是 TRPO 的一种改进算法,它在实现上简化了 TRPO 中的复杂计算,并且它在实验中的性能大多数情况下会比 TRPO 更好,因此目前常被用作一种常用的基准算法。需要注意的是,TRPO 和 PPO 都属于在线策略学习算法,即使优化目标中包含重要性采样的过程,但其只是用到了上一轮策略的数据,而不是过去所有策略的数据。

PPO 是 TRPO 的第一作者 John Schulman 从加州大学伯克利分校博士毕业后在 OpenAI 公司研究出来的。通过对 TRPO 计算方式的改进,PPO 成为了最受关注的深度强化学习算法之一,并且其论文的引用量也超越了 TRPO。

12.6 参考文献

[1] SCHULMAN J, FILIP W, DHARIWAL P, et al. Proximal policy optimization algorithms [J]. Machine Learning, 2017.